References
[1] M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv., 2(2) (2016) e1500323; https://doi.org/10.1126/sciadv.1500323
[2] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43(9) (2009) 2317–2348. https://doi.org/10.1016/j.watres.2009.03.010
[3] T.B. Hassen, H. El Bilali, Water management in the Gulf Cooperation Council: Challenges and prospects. Curr. Direct. Water Scarc. Res., 5 (2022) 525–540. https://doi.org/10.1016/B978-0-323-85378-1.00026-X
[4] G.O. Odhiambo, Water scarcity in the Arabian Peninsula and socio-economic implications. Appl. Wat. Sci., 7(5) (2017) 2479–2492. https://doi.org/10.1007/s13201-016-0440-1
[5] M.F. Al-Rashed, M.M. Sherif, Water resources in the GCC countries: an overview. Water Resour. Manage., 14 (2000) 59–75. https://doi.org/10.1023/A:1008127027743
[6] Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci., 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046
[7] M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312 (2013) 124–129. https://doi.org/10.1016/j.desal.2012.07.034
[8] T. Hoepner, S. Lattemann, Chemical impacts from seawater desalination plants—a case study of the northern Red Sea. Desalination, 152 (2003) 133–140. https://doi.org/10.1016/S0011-9164(02)01056-1
[9] D.H. Kim, A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination, 270 (2011) 1–8. https://doi.org/10.1016/j.desal.2010.12.041
[10] MEWRE Statistical Year Book. State of Kuwait: Ministry of Electricity and Water and Renewable Energy, 2023.
[11] Y. Elsaie, S. Ismail, H. Soussa, M. Gado, A. Balah, Water desalination in Egypt; literature review and assessment. Ain Shams Eng. J., 14(7) (2023) 101998. https://doi.org/10.1016/j.asej.2022.101998
[12] S. Lattemann, Development of an Environ Impact Assessment and Decision Support System for Seawater Desal Plants. Ph.D. Dissertation, Delft University of Technology, Netherlands, 2010.
[13] M.A. Darwish, F.M. Al-Awadhi, A.M. Darwish, Energy and Water in Kuwait Part I. A sustainability view point. Desalination, 225 (2008) 341–355. https://doi.org/10.1016/j.desal.2007.06.018
[14] N. Ghaffour, S. Lattemann, T. Missimer, K.C. Ng, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies. Appl. Energy, 136 (2014) 1155–1165. https://doi.org/10.1016/j.apenergy.2014.03.033
[15] E. Jones, M. Qadir, M.T. van Vliet, V. Smakhtin, S.M. Kang, The state of desalination and brine production: a global outlook. Sci. Total Environ., 657 (2019) 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
[16] D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res., 44(18) (2010) 5117–5128. https://doi.org/10.1016/j.watres.2010.04.036
[17] D. Ariono, M. Purwasasmita, I.G. Wenten, Brine effluents: characteristics, environmental impacts, and their handling. J. Eng. Technol. Sci., 48(4) (2016) 367–387. http://dx.doi.org/10.5614/j.eng.technol.sci.2016.48.4.1
[18] S. Stein, H.A. Michael, B. Dugan, Injection of desalination brine into the saline part of the coastal aquifer; environmental and hydrological implications. Water Res., 207 (2021) 117820. https://doi.org/10.1016/j.watres.2021.117820
[19] M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science, 333(6043) (2011) 712–717. https://doi.org/10.1126/science.1200488
[20] M.C. Mickley, Membrane Concentrate Disposal: Practices and Regulation. Desalination and Water Purification Research and Development Program Report No. 123, 2007.
[21] N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination, 309 (2013) 197–207. https://doi.org/10.1016/j.desal.2012.10.015
[22] Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. J. Membr. Sci., 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046
[23] S.C. Low, Preliminary studies of seawater desalination using forward osmosis. Desal. Water Treat., 7 (2009) 41–46. https://doi.org/10.5004/dwt.2009.698
[24] M. Mohammadifakhr, J. de Grooth, H.D. Roesink, A.J. Kemperman, Forward osmosis: a critical review. Processes, 8(4) (2020) 404. https://doi.org/10.3390/pr8040404
[25] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments. J. Membr. Sci., 281 (2006) 70–87. https://doi.org/10.1016/j.memsci.2006.05.048
[26] R.V. Linares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse. Water Res., 66 (2014) 122–139. https://doi.org/10.1016/j.watres.2014.08.021
[27] A. Altaee, G. Zaragoza, H.R. van Tonningen, Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination, 336 (2014) 50–57. https://doi.org/10.1016/j.desal.2014.01.002
[28] R.L. McGinnis, M. Elimelech, Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, 207 (2007 370–382. https://doi.org/10.1016/j.desal.2006.08.012
[29] T. Husnain, Y. Liu, R. Riffat, B. Mi, Integration of forward osmosis and membrane distillation for sustainable wastewater reuse. Sep. Purif. Technol., 156 (2015) 424–431. https://doi.org/10.1016/j.seppur.2015.10.031
[30] B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J. Membr. Sci., 348 (2010) 337–345. https://doi.org/10.1016/j.memsci.2009.11.021
[31] P. Nicoll, Forward Osmosis is Not to Be Ignored. Proceedings of The International Desalination Association World Congress on Desalination and Water Reuse, Tinajin, China, October 20–25, 2013.
[32] L. Liu, M. Wang, D. Wang, C. Gao, Current patents of forward osmosis membrane process. Recent Patents Chem. Eng., 2(1) (2009) 76–82. http://dx.doi.org/10.2174/2211334710902010076
[33] D. Li, X. Zhang, G.P. Simon, H. Wang, Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res., 47(1) (2013) 209–215. https://doi.org/10.1016/j.watres.2012.09.049
[34] H. Bai, Z. Liu, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol., 81(3) (2011) 392–399. https://doi.org/10.1016/j.seppur.2011.08.007
[35] D. Li, X. Zhang, J. Yao, G.P. Simon, H. Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun., 47(6) (2011) 1710–1712. https://doi.org/10.1039/C0CC04701E
[36] Q. Ge, P. Wang, C. Wan, T.S. Chung, Polyelectrolyte-promoted forward osmosis–membrane distillation (FO–MD) hybrid process for dye wastewater treatment. Environ. Sci. Technol., 46(11) (2012) 6236–6243. https://doi.org/10.1021/es300784h
[37] M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res., 49(12) (2010) 5869–5876. https://doi.org/10.1021/ie100438x
[38] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, L.A. Hoover, Y.C. Kim, M. Elimelech, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol., 45(10) (2011) 4360–4369. https://doi.org/10.1021/es104325z
[39] A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci., 343 (2009) 42–52. https://doi.org/10.1016/j.memsci.2009.07.006
[40] K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci., 8(2) (1981) 141–171. https://doi.org/10.1016/S0376-7388(00)82088-8
[41] M. Ahmed, M. Abdel-Jawad, Y. Al-Wazzan, A. Al-Odwani, J. Thomas, Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration. Desal. Water Treat., 66 (2017) 50–59. https://doi.org/10.5004/dwt.2017.11142
[42] M. Ahmed, B. Garudachari, K.A. Rajesha, J. Thomas, Evaluation of the separation performance of thin film composite forward osmosis membrane using sodium chloride draw solution for Arabian Gulf seawater desalination. Desal. Water Treat., 107 (2018) 1–9.
https://doi.org/10.5004/dwt.2018.22077
[43] M. Ahmed, R. Kumar, Y. Al-Wazzan, B. Garudachari, J.P. Thomas, Assessment of performance of inorganic draw solutions tested in forward osmosis process for desalinating Arabian gulf seawater. Arab. J. Sci. Eng., 43(11) (2018) 6171–6180. https://doi.org/10.1007/s13369-018-3394-9
[44] M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Performance evaluation of a thermo-responsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination, 452 (2019) 132–140. https://doi.org/10.1016/j.desal.2018.11.013
[45] M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Assessment of pilot scale forward osmosis system for Arabian Gulf seawater desalination using polyelectrolyte draw solution. Desal. Water Treat, 157 (2019) 342–348. https://doi.org/10.5004/dwt.2019.24267
[46] M. Ahmed, R. Kumar, H. Sakurai, Y. Al-Wazzan, G. Bhadrachari, T. Nakao, J.P. Thomas, Exploring the performance parameters of a commercial-scale hollow fibre forward osmosis module during the Arabian Gulf seawater desalination. Arab. J. Sci. Eng., 47(5) (2022) 6181–6192. https://doi.org/10.1007/s13369-021-06018-3
[47] M. Ahmed, R.K. Alambi, G. Bhadrachari, S. Al-Muqahwi, J.P. Thomas, Design and optimization of a unique pilot scale forward osmosis integrated membrane distillation system for seawater desalination. J. Environ. Chem. Eng., 11(3) (2023) 109949. https://doi.org/10.1016/j.jece.2023.109949
[48] M. Ahmad, B. Garudachari, Y. Al-Wazzan, R. Kumar, J.P. Thomas, Mineral extraction from seawater reverse osmosis brine of Gulf seawater. Desal. Water Treat., 144 (2019) 45–56. https://doi.org/10.5004/dwt.2019.23679
[49] B. Garudachari, A. Al-Odwani, R.K. Alambi, M. Al-Tabtabaei, Y. Al-Foudari, Development of carbon nanotube membranes for dissolved gases removal as seawater pretreatment. Desal. Water Treat., 208 (2020) 104–109. https://doi.org/10.5004/dwt.2020.26465
[50] B. Garudachari, A. Al-Odwani, R. Kumar, M. Al-Tabtabaei, M. Al-Rughaib, Membrane degasification for desalination industries: a literature review. Desal. Water Treat., 238 (2021) 28–37. https://doi.org/10.5004/dwt.2021.27821
[51] R. Kumar, S. Al-Haddad, M. Al-Rughaib, M. Salman, Evaluation of hydrolyzed poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination, 394 (2016) 148–154. https://doi.org/10.1016/j.desal.2016.05.012
[52] K. Rajesha, H. Al-Jabli, S. Al-Haddad, M. Al-Rughaib, J. Samuel, Modified titanate nanotubes incorporated polyamide layer for the fabrication of fouling control thin-film nanocomposite forward osmosis membranes. Desal. Water Treat., 69 (2017) 56–64. https://doi.org/10.5004/dwt.2017.0623
[53] K. Rajesha, M. Salman, S. Al-Haddad, Evaluation of a mixture of amines for the preparation of the polyamide layer of the thin-film nanocomposite membranes for forward osmosis. Desal. Water Treat., 78 (2017) 49–56. https://doi.org/10.5004/dwt.2017.20903
[54] R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Evaluation of the forward osmosis performance of cellulose acetate nanocomposite membranes. Arab. J. Sci. Eng., 43 (2018) 5871–5879. https://doi.org/10.1007/s13369-017-3048-3
[55] R. Kumar, M. Ahmed, S. Ok, B. Garudachari, J.P. Thomas, Boron selective thin film composite nanofiltration membrane fabricated via a self-assembled trimesic acid layer at a liquid–liquid interface on an ultrafiltration support. New J. Chem., 43(9) (2019) 3874–3883. https://doi.org/10.1039/C8NJ05670F
[56] K. Rajesha, M. Ahmed, G. Bhadrachari, A. Al-Mesri, J.P. Thomas, Hydrophobically modified silica blend PVDF nanocomposite membranes for seawater desalination via direct contact membrane distillation. Desal. Water Treat., 148 (2019) 20–29. https://doi.org/10.5004/dwt.2019.23822
[57] R. Kumar, M. Ahmed, G. Bhadrachari, S. Al-Muqahwi, J.P. Thomas, Thin-film nanocomposite membrane comprised of a novel phosphonic acid derivative of titanium dioxide for efficient boron removal. J. Environ. Chem. Eng., 9(4) (2021) 105722. https://doi.org/10.1016/j.jece.2021.105722
[58] R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Thin film nanocomposite nanofiltration membrane, US 10, 124, 297 B1.
[59] Y. Al-Wazzan, M. Ahmed, A. Al-Mesri, M. Al-Tabtabaei, System and Method for Pretreating Turbid Seawater, US 10, 183, 882 B1.
[60] B. Garudachari, M. Ahmed, R. Kumar, J.P. Thomas, Desalination System with Mineral Recovery, US 10, 280, 095 B1.
[61] M. Ahmed, R. Kumar, B. Garudachari, Y. Al-Wazzan, J.P. Thomas, Pressure - Reduced Saline Water Treatment System, US 10, 308, 524 B1.
[62] M. Ahmed, R. Kumar, G. Bhadrachari, Y. Al-Wazzan, J.P. Thomas, High Water Recovery Hybrid Membrane System for Desalination and Brine Concentration, US 10, 940, 439 B1.
[63] H.K. Abdulrahim, M. Ahmed, Integrated Desalination and Air Conditioning System, US 11, 035, 581 B1.
[64] R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Method for Making Metal Organic Frameworks and Thin Film Nanocomposite Membranes Using the Same, US 11, 254, 691 B1.
[65] H.K. Abdulrahim, M. Ahmed, Desalination and Cooling System, US 11, 407, 659 B1.