• deswater.com

  • Dupont

  • Global Water Intelligence

  • DesalData

  • Water Desalination Report

  • Sea4Value

  • New Skin

  • Collect Papers of Sidney Loeb 1917 - 2008

  • New

Revolutionizing desalination: KISR's breakthrough projects addressing water crisis challenges

Mansour Ahmed

Kuwait Institute for Scientific Research, Water Research Center, P.O. Box 24885, 13109, Safat, Kuwait
email: mahmed@kisr.edu.kw

(2025) 54–68
https://doi.org/10.5004.dsal.2025.700092

References [1] M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv., 2(2) (2016) e1500323; https://doi.org/10.1126/sciadv.1500323 [2] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43(9) (2009) 2317–2348. https://doi.org/10.1016/j.watres.2009.03.010 [3] T.B. Hassen, H. El Bilali, Water management in the Gulf Cooperation Council: Challenges and prospects. Curr. Direct. Water Scarc. Res., 5 (2022) 525–540. https://doi.org/10.1016/B978-0-323-85378-1.00026-X [4] G.O. Odhiambo, Water scarcity in the Arabian Peninsula and socio-economic implications. Appl. Wat. Sci., 7(5) (2017) 2479–2492. https://doi.org/10.1007/s13201-016-0440-1 [5] M.F. Al-Rashed, M.M. Sherif, Water resources in the GCC countries: an overview. Water Resour. Manage., 14 (2000) 59–75. https://doi.org/10.1023/A:1008127027743 [6] Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci., 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046 [7] M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312 (2013) 124–129. https://doi.org/10.1016/j.desal.2012.07.034 [8] T. Hoepner, S. Lattemann, Chemical impacts from seawater desalination plants—a case study of the northern Red Sea. Desalination, 152 (2003) 133–140. https://doi.org/10.1016/S0011-9164(02)01056-1 [9] D.H. Kim, A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination, 270 (2011) 1–8. https://doi.org/10.1016/j.desal.2010.12.041 [10] MEWRE Statistical Year Book. State of Kuwait: Ministry of Electricity and Water and Renewable Energy, 2023. [11] Y. Elsaie, S. Ismail, H. Soussa, M. Gado, A. Balah, Water desalination in Egypt; literature review and assessment. Ain Shams Eng. J., 14(7) (2023) 101998. https://doi.org/10.1016/j.asej.2022.101998 [12] S. Lattemann, Development of an Environ Impact Assessment and Decision Support System for Seawater Desal Plants. Ph.D. Dissertation, Delft University of Technology, Netherlands, 2010. [13] M.A. Darwish, F.M. Al-Awadhi, A.M. Darwish, Energy and Water in Kuwait Part I. A sustainability view point. Desalination, 225 (2008) 341–355. https://doi.org/10.1016/j.desal.2007.06.018 [14] N. Ghaffour, S. Lattemann, T. Missimer, K.C. Ng, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies. Appl. Energy, 136 (2014) 1155–1165. https://doi.org/10.1016/j.apenergy.2014.03.033 [15] E. Jones, M. Qadir, M.T. van Vliet, V. Smakhtin, S.M. Kang, The state of desalination and brine production: a global outlook. Sci. Total Environ., 657 (2019) 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076 [16] D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res., 44(18) (2010) 5117–5128. https://doi.org/10.1016/j.watres.2010.04.036 [17] D. Ariono, M. Purwasasmita, I.G. Wenten, Brine effluents: characteristics, environmental impacts, and their handling. J. Eng. Technol. Sci., 48(4) (2016) 367–387. http://dx.doi.org/10.5614/j.eng.technol.sci.2016.48.4.1 [18] S. Stein, H.A. Michael, B. Dugan, Injection of desalination brine into the saline part of the coastal aquifer; environmental and hydrological implications. Water Res., 207 (2021) 117820. https://doi.org/10.1016/j.watres.2021.117820 [19] M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science, 333(6043) (2011) 712–717. https://doi.org/10.1126/science.1200488 [20] M.C. Mickley, Membrane Concentrate Disposal: Practices and Regulation. Desalination and Water Purification Research and Development Program Report No. 123, 2007. [21] N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination, 309 (2013) 197–207. https://doi.org/10.1016/j.desal.2012.10.015 [22] Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. J. Membr. Sci., 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046 [23] S.C. Low, Preliminary studies of seawater desalination using forward osmosis. Desal. Water Treat., 7 (2009) 41–46. https://doi.org/10.5004/dwt.2009.698 [24] M. Mohammadifakhr, J. de Grooth, H.D. Roesink, A.J. Kemperman, Forward osmosis: a critical review. Processes, 8(4) (2020) 404. https://doi.org/10.3390/pr8040404 [25] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments. J. Membr. Sci., 281 (2006) 70–87. https://doi.org/10.1016/j.memsci.2006.05.048 [26] R.V. Linares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse. Water Res., 66 (2014) 122–139. https://doi.org/10.1016/j.watres.2014.08.021 [27] A. Altaee, G. Zaragoza, H.R. van Tonningen, Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination, 336 (2014) 50–57. https://doi.org/10.1016/j.desal.2014.01.002 [28] R.L. McGinnis, M. Elimelech, Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, 207 (2007 370–382. https://doi.org/10.1016/j.desal.2006.08.012 [29] T. Husnain, Y. Liu, R. Riffat, B. Mi, Integration of forward osmosis and membrane distillation for sustainable wastewater reuse. Sep. Purif. Technol., 156 (2015) 424–431. https://doi.org/10.1016/j.seppur.2015.10.031 [30] B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J. Membr. Sci., 348 (2010) 337–345. https://doi.org/10.1016/j.memsci.2009.11.021 [31] P. Nicoll, Forward Osmosis is Not to Be Ignored. Proceedings of The International Desalination Association World Congress on Desalination and Water Reuse, Tinajin, China, October 20–25, 2013. [32] L. Liu, M. Wang, D. Wang, C. Gao, Current patents of forward osmosis membrane process. Recent Patents Chem. Eng., 2(1) (2009) 76–82. http://dx.doi.org/10.2174/2211334710902010076 [33] D. Li, X. Zhang, G.P. Simon, H. Wang, Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res., 47(1) (2013) 209–215. https://doi.org/10.1016/j.watres.2012.09.049 [34] H. Bai, Z. Liu, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol., 81(3) (2011) 392–399. https://doi.org/10.1016/j.seppur.2011.08.007 [35] D. Li, X. Zhang, J. Yao, G.P. Simon, H. Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun., 47(6) (2011) 1710–1712. https://doi.org/10.1039/C0CC04701E [36] Q. Ge, P. Wang, C. Wan, T.S. Chung, Polyelectrolyte-promoted forward osmosis–membrane distillation (FO–MD) hybrid process for dye wastewater treatment. Environ. Sci. Technol., 46(11) (2012) 6236–6243. https://doi.org/10.1021/es300784h [37] M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res., 49(12) (2010) 5869–5876. https://doi.org/10.1021/ie100438x [38] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, L.A. Hoover, Y.C. Kim, M. Elimelech, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol., 45(10) (2011) 4360–4369. https://doi.org/10.1021/es104325z [39] A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci., 343 (2009) 42–52. https://doi.org/10.1016/j.memsci.2009.07.006 [40] K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci., 8(2) (1981) 141–171. https://doi.org/10.1016/S0376-7388(00)82088-8 [41] M. Ahmed, M. Abdel-Jawad, Y. Al-Wazzan, A. Al-Odwani, J. Thomas, Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration. Desal. Water Treat., 66 (2017) 50–59. https://doi.org/10.5004/dwt.2017.11142 [42] M. Ahmed, B. Garudachari, K.A. Rajesha, J. Thomas, Evaluation of the separation performance of thin film composite forward osmosis membrane using sodium chloride draw solution for Arabian Gulf seawater desalination. Desal. Water Treat., 107 (2018) 1–9. https://doi.org/10.5004/dwt.2018.22077 [43] M. Ahmed, R. Kumar, Y. Al-Wazzan, B. Garudachari, J.P. Thomas, Assessment of performance of inorganic draw solutions tested in forward osmosis process for desalinating Arabian gulf seawater. Arab. J. Sci. Eng., 43(11) (2018) 6171–6180. https://doi.org/10.1007/s13369-018-3394-9 [44] M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Performance evaluation of a thermo-responsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination, 452 (2019) 132–140. https://doi.org/10.1016/j.desal.2018.11.013 [45] M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Assessment of pilot scale forward osmosis system for Arabian Gulf seawater desalination using polyelectrolyte draw solution. Desal. Water Treat, 157 (2019) 342–348. https://doi.org/10.5004/dwt.2019.24267 [46] M. Ahmed, R. Kumar, H. Sakurai, Y. Al-Wazzan, G. Bhadrachari, T. Nakao, J.P. Thomas, Exploring the performance parameters of a commercial-scale hollow fibre forward osmosis module during the Arabian Gulf seawater desalination. Arab. J. Sci. Eng., 47(5) (2022) 6181–6192. https://doi.org/10.1007/s13369-021-06018-3 [47] M. Ahmed, R.K. Alambi, G. Bhadrachari, S. Al-Muqahwi, J.P. Thomas, Design and optimization of a unique pilot scale forward osmosis integrated membrane distillation system for seawater desalination. J. Environ. Chem. Eng., 11(3) (2023) 109949. https://doi.org/10.1016/j.jece.2023.109949 [48] M. Ahmad, B. Garudachari, Y. Al-Wazzan, R. Kumar, J.P. Thomas, Mineral extraction from seawater reverse osmosis brine of Gulf seawater. Desal. Water Treat., 144 (2019) 45–56. https://doi.org/10.5004/dwt.2019.23679 [49] B. Garudachari, A. Al-Odwani, R.K. Alambi, M. Al-Tabtabaei, Y. Al-Foudari, Development of carbon nanotube membranes for dissolved gases removal as seawater pretreatment. Desal. Water Treat., 208 (2020) 104–109. https://doi.org/10.5004/dwt.2020.26465 [50] B. Garudachari, A. Al-Odwani, R. Kumar, M. Al-Tabtabaei, M. Al-Rughaib, Membrane degasification for desalination industries: a literature review. Desal. Water Treat., 238 (2021) 28–37. https://doi.org/10.5004/dwt.2021.27821 [51] R. Kumar, S. Al-Haddad, M. Al-Rughaib, M. Salman, Evaluation of hydrolyzed poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination, 394 (2016) 148–154. https://doi.org/10.1016/j.desal.2016.05.012 [52] K. Rajesha, H. Al-Jabli, S. Al-Haddad, M. Al-Rughaib, J. Samuel, Modified titanate nanotubes incorporated polyamide layer for the fabrication of fouling control thin-film nanocomposite forward osmosis membranes. Desal. Water Treat., 69 (2017) 56–64. https://doi.org/10.5004/dwt.2017.0623 [53] K. Rajesha, M. Salman, S. Al-Haddad, Evaluation of a mixture of amines for the preparation of the polyamide layer of the thin-film nanocomposite membranes for forward osmosis. Desal. Water Treat., 78 (2017) 49–56. https://doi.org/10.5004/dwt.2017.20903 [54] R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Evaluation of the forward osmosis performance of cellulose acetate nanocomposite membranes. Arab. J. Sci. Eng., 43 (2018) 5871–5879. https://doi.org/10.1007/s13369-017-3048-3 [55] R. Kumar, M. Ahmed, S. Ok, B. Garudachari, J.P. Thomas, Boron selective thin film composite nanofiltration membrane fabricated via a self-assembled trimesic acid layer at a liquid–liquid interface on an ultrafiltration support. New J. Chem., 43(9) (2019) 3874–3883. https://doi.org/10.1039/C8NJ05670F [56] K. Rajesha, M. Ahmed, G. Bhadrachari, A. Al-Mesri, J.P. Thomas, Hydrophobically modified silica blend PVDF nanocomposite membranes for seawater desalination via direct contact membrane distillation. Desal. Water Treat., 148 (2019) 20–29. https://doi.org/10.5004/dwt.2019.23822 [57] R. Kumar, M. Ahmed, G. Bhadrachari, S. Al-Muqahwi, J.P. Thomas, Thin-film nanocomposite membrane comprised of a novel phosphonic acid derivative of titanium dioxide for efficient boron removal. J. Environ. Chem. Eng., 9(4) (2021) 105722. https://doi.org/10.1016/j.jece.2021.105722 [58] R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Thin film nanocomposite nanofiltration membrane, US 10, 124, 297 B1. [59] Y. Al-Wazzan, M. Ahmed, A. Al-Mesri, M. Al-Tabtabaei, System and Method for Pretreating Turbid Seawater, US 10, 183, 882 B1. [60] B. Garudachari, M. Ahmed, R. Kumar, J.P. Thomas, Desalination System with Mineral Recovery, US 10, 280, 095 B1. [61] M. Ahmed, R. Kumar, B. Garudachari, Y. Al-Wazzan, J.P. Thomas, Pressure - Reduced Saline Water Treatment System, US 10, 308, 524 B1. [62] M. Ahmed, R. Kumar, G. Bhadrachari, Y. Al-Wazzan, J.P. Thomas, High Water Recovery Hybrid Membrane System for Desalination and Brine Concentration, US 10, 940, 439 B1. [63] H.K. Abdulrahim, M. Ahmed, Integrated Desalination and Air Conditioning System, US 11, 035, 581 B1. [64] R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Method for Making Metal Organic Frameworks and Thin Film Nanocomposite Membranes Using the Same, US 11, 254, 691 B1. [65] H.K. Abdulrahim, M. Ahmed, Desalination and Cooling System, US 11, 407, 659 B1.
$45.00
Abstract

Desalination, a vital solution to the rapidly increasing global water crisis, faces persistent
challenges in efficiency, sustainability, and economic viability. This article presents a comprehensive
overview of innovative research activities of the Water Desalination Technologies
(WDT) program at the Water Research Center (WRC) of the Kuwait Institute for Scientific
Research (KISR) aimed at revolutionizing desalination technologies to combat these challenges.
The article explores a multidimensional approach, showcasing WRC’s intensive
efforts in exploring innovative processes and cutting-edge technologies. This paper highlights
various innovative projects conducted at laboratory and pilot scales and covers
diverse solution areas. From exploring forward osmosis processes to pioneering hybrid
membrane systems and zero liquid discharge treatment for oil-produced water, the WRC’s
initiatives cover a broad spectrum of technological advancements. Notably, the research also
explores mineral extraction technologies and cutting-edge developments in membranes,
showcasing a holistic approach to addressing desalination challenges. The article emphasizes
KISR’s commitment to innovation by spotlighting the institute’s intellectual property
developments in the desalination and water treatment domains. These initiatives collectively
underscore a dedicated effort to overcome hurdles in desalination, offering promising
pathways toward heightened efficiency, sustainability, and the realization of a water-secure
future. By presenting a detailed overview of WRC’s pioneering research, this article contributes
valuable insights into the evolution of desalination technologies, paving the way for
impactful advancements in the field.

Keywords: Desalination; Cutting edge technologies; Hybrid membrane systems; Zero liquid
discharge; Mineral

Product Details
16 other entries in the same category:

Multi-objective optimization of innovative renewable energy-powered desalination and cooling system: a cutting-edge approach

Hassan Abdulrahim*, Mansour Ahmed, Yousef Al-Wazzan, Salah Al-Jazzaf

Water Research Center (WRC), Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109 Safat, Kuwait,
*email: habdulrahim@kisr.edu.kw (corresponding author)

(2025) 69–76
https://doi.org/10.5004.dsal.2025.700069

References [1] Ben Hassen, T., El Bilali, H., 2022, Water management in the Gulf Cooperation Council: challenges and prospects, in Current Directions in Water Scarcity Research: Water Scarcity, Contamination, and Management, A.K. Tiwari et al., Eds. Elsevier, vol. 5, pp. 525–540. [2] World Future Energy Summit - WFES, 2023, Tapped out – The new normal of...
Price $45.00
More
In stock

An innovative approach to desalination and cooling using forward osmosis with thermal recovery and vapor absorption cycle

Hassan K. Abdulrahim*, Mansour Ahmed

Water Research Center (WRC), Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109 Safat, Kuwait,
*email: habdulrahim@kisr.edu.kw (corresponding author)

(2025) 47–53
https://doi.org/10.5004.dsal.2025.700073

References [1] M.A. Darwish, N.M. Al-Najem, The water problem in Kuwait, Desalination, 177 (2005) 167–177. https://doi.org/10.1016/j.desal.2004.07.053 [2] A.M.R. Al-Marafie, M.A. Darwish, Water production in Kuwait: its management and economics, Desalination, 71 (1989) 45–55. https://doi.org/10.1016/0011-9164(89)87057-2 [3] MEW, Statistical year book for...
Price $45.00
More
In stock

Advanced GC-MS-SIM method for simultaneous determination of isphenol-A and phthalic acid esters (PAEs) in seawater

Mohammed Akkbik*, Ahmad Ali Ahmadi, Noora Al-Qahtani

Central Laboratories Unit, Office of VP for Research & Graduate Studies, Qatar University, Doha, Qatar
*email: m.akkbik@qu.edu.qa (corresponding author)

(2025) 35–39
https://doi.org/10.5004.dsal.2025.700039

References Z.-M. Zhang, H.-H. Zhang, J.-L. Li, G.-P. Yang, Determination of phthalic acid esters in seawater and sediment by solid-phase microextraction and gas chromatography-mass spectrometry. Chinese J. Anal. Chem., 45 (2017) 348–356. https://doi.org/10.1016/S1872-2040(17)60999-X [2] S.N. Dimassi, J.N. Hahladakis, M.N.D. Yahia, M.I. Ahmad, S. Sayadi,...
Price $45.00
More
In stock

Oil spill management to prevent catastrophic shutdown of desalination plants

Zhaoyang Liu

Senior Scientist, Water Center, Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Qatar, email: zhliu@hbku.edu.qa

(2025) 18-21
https://doi.org/10.5004.dsal.2025.700102

References H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: a state-of-the-art review. Desalination, 491 (2020) 114569, https://doi.org/10.1016/j.desal.2020.114569 A. Najim, A review of advances in freeze desalination and future prospects. Npj Clean Water, 5 (2022) 1–15, https://doi.org/10.1038/s41545-022-00158-1 D. Curto, V....
Price $45.00
More
In stock

Assessment of groundwater suitability for drinking and irrigation purposes using physicochemical parameters at Al-Jouf Area, Saudi Arabia

Raid Alrowais1*, Mahmoud M. Abdel daiem2

1Department of Civil Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia
*email: rnalrowais@ju.edu.sa (corresponding author)
2Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt


(2025) 146–152
https://doi.org/10.5004.dsal.2025.700086

References [1] M.Y.A. Khan, M. El Kashouty, W. Gusti, A. Kumar, A.M. Subyani, A. Alshehri, Geo-temporal signatures of physicochemical and heavy metals pollution in groundwater of Khulais region—Makkah Province, Saudi Arabia, Front. Environ. Sci., 9 (2022) 699. https://doi.org/10.3389/fenvs.2021.800517 [2] J. Mallick, C.K. Singh, M.K. AlMesfer, V.P....
Price $45.00
More
In stock

Treated wastewater application in urban agriculture

Ahmed Al-Busaidi1*, Mushtaque Ahmed1, Wenresti Gallardo2, Waad Al-Aghbari1

1Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University
2Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, P.O. Box 34, Al-Khoud 123, Muscat, Oman
*email: ahmed99@squ.edu.om (corresponding author)

(2025) 251–262
https://doi.org/10.5004.dsal.2025.700007

References Abd-Elfattah, A., Shehata, S.M., Talab, A.S., 2002, Evaluation of irrigation with either raw municipal Treated Waste or river water on elements up take and yield of lettuce and potato plants. Egypt. J. Soil Sci., 42 (4): 705–714. Abdelrahman, H. A., Alkhamisi, S.A., Ahmed, M, Ali, H., 2011, Effects of Treated Wastewater Irrigation on Element...
Price $45.00
More
In stock

Oxide activated carbon for seawater desalination using solar energy

Wafa A. Al Rawahi*, Amal S. Al Rahbi, Maryam S. Al Hashmi, Marwa Al Riyami, Hanadi Al Aameriya, Nada A. Al-Toubi, Riham A. Al-Nabhani

University of Technology and Applied Sciences, Applied Sciences Department, PO Box 74, Al-Khuwair, Postal Code 133, Al Khuwair Al Janubyyah St, Muscat, Oman
*email: wafaaqib@hct.edu.om, wafa.alrawahi@utas.edu.om (corresponding author)

(2025) 40–46
https://doi.org/10.5004.dsal.2025.700032

References Abushammala, M.F.M., Al-Harrasi, S.H.S., Qazi, W.A., 2020,Optimal selection of seawater desalination technology in Oman. J. Environ. Eng. Sci., 16, 11–18. https://doi.org/10.1680/jenes.19.00049 Abushawish, A., Bouaziz, I., Almanassra, I.W., AL-Rajabi, M.M., Jaber, L., Khalil, A.K.A., Takriff, M.S., Laoui, T., Shanableh, A., Atieh, M.A.,...
Price $45.00
More
In stock

Atmospheric water generation in Qatar: a sustainable approach for extracting water from air powered by solar energy

Aiyad Gannan

Department of Mechanical Engineering University of Doha for Science and Technology, Doha, Qatar, email: aiyad.gannan@udst.edu.qa

(2025) 141–145
https://doi.org/10.5004.dsal.2025.700031

References [1] R.M. Hannun, H.E. Radhi, H. Hussein, Design and evaluation of a combined (humidification-dehumidification) system to extract fresh water from the air in the arid area, Int. J. Eng. Res. Africa, 52 (2021) 115–123. https://doi.org/10.4028/www.scientific.net/JERA.52.115 [2] M.S. Ferwati, Water harvesting cube, SN Appl. Sci., 1 (2019) 779....
Price $45.00
More
In stock

Development of flood risk mapping and mitigation strategies for Al-Qassim region

Atef Q. Kawara, Ibrahim H. Elsebaie

Civil Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia,
email: 439106883@student.ksu.edu.sa (A.Q. Kawara), elsebaie@ksu.edu.sa (I.H. Elsebaie)

(2025) 133–140
https://doi.org/10.5004.dsal.2025.700050

References Abubakar, I.R., Dano, U.L., 2020, Sustainable urban planning strategies for mitigating climate change in Saudi Arabia. Environment, Development and Sustainability, 22(6): 5129–5152. https://doi.org/10.1007/s10668-019-00417-1 Alarifi, S.S., Abdelkareem, M., Abdalla, F., Alotaibi, M., 2022, Flash flood hazard mapping using remote sensing and GIS...
Price $45.00
More
In stock