References
[1] M.Y. Khudair, A.H. Kamel, S.O. Sulaiman, N. Al Ansari, Groundwater quality and sustainability evaluation for irrigation purposes: a case study in an arid region, Iraq, Int. J. Sustain. Develop. Plan., 17(2) (2022) 413–419, https://doi.org/10.18280/ijsdp.170206.
[2] I.M. Abdulhameed, S.O. Sulaiman, A.B.A. Najm, Reuse wastewater by using water evaluation and planning (WEAP) (Ramadi City — case study), in IOP Conf. Ser.: Earth and Environmental Science, IOP Publishing Ltd, Jul. 2021. doi:10.1088/1755-1315/779/1/012104.
[3] S.O. Sulaiman, H.H. Abdullah, N. Al-Ansari, J. Laue, Z.M. Yaseen, Simulation model for optimal operation of Dokan Dam Reservoir North of Iraq, Int. J. Design Nature Ecodynamics, 16(3) (2021) 301–306, doi: 10.18280/ijdne.160308.
[4] M. Eryiğit, S.O. Sulaiman, A.B.A. Najm, N.M. Mhedi, Optimal management of multiple water resources by a heuristic optimization for a water supply in the desert cities of Western Iraq, Desal. Water Treat., vol. 281 (2023) 7–14, doi: 10.5004/dwt.2023.28239.
[5] K.N. Sayl, S.O. Sulaiman, A.H. Kamel, N. Al Ansari, Towards the generation of a spatial hydrological soil group map based on the radial basis network model and spectral reflectance band recognition, Int. J. Design Nature Ecodynamics, 17(5) (2022) 761–766. doi:10.18280/ijdne.170514.
[6] S.O. Sulaiman, N.S. Mahmood, A.H. Kamel, N. Al-Ansari, The evaluation of the SWAT model performance to predict the runoff values in the Iraqi western desert, Environ. Ecol. Res., 9(6) (2021) 330–339, doi:10.13189/eer.2021.090602.
[7] M. Eryiğit, S.O. Sulaiman, Specifying optimum water resources based on cost-benefit relationship for settlements by artificial immune systems: Case study of Rutba City, Iraq, Water Supply, 22(6) (2022) 5873–5881, doi: 10.2166/ws.2022.227.
[8] S.O. Sulaiman, G. Al-Dulaimi, H. Al Thamiry, Natural rivers longitudinal dispersion coefficient simulation using hybrid soft computing model, Proc. Int. Conf. Developments in eSystems Engineering, DeSE, Institute of Electrical and Electronics Engineers Inc., July 2019, pp. 280–283. doi: 10.1109/DeSE.2018.00056.
[9] U.S. Army Corps of Engineers, HEC-RAS River Analysis System HEC-RAS Hydraulic Reference Manual, Davis, CA 95616, Dec. 2023. Available at http://www.hec.usace.army.mil
[10] M.J. Al-Kazwini, R.H. Al-Suhaily, S.A. Al-hdawi, Numerical Modeling of Flood Wave Behavior with Meandering Effects (Euphrates River, Haditha-Hit), 2011.
[11] H.H. Mhmood, M. Yilmaz, S.O. Sulaiman, Simulation of the flood wave caused by hypothetical failure of the Haditha Dam, J. Appl. Water Eng. Res., (2022) 1–11, doi: 10.1080/23249676.2022.2050312.
[12] I.R. Karim, Z.F. Hassan, H.H. Abdullah, I.A. Alwan, 2d-hec-ras modeling of flood wave propagation in a semi-arid area due to dam overtopping failure, Civil Eng. J. (Iran), 7(9) (2021) 1501–1514, doi:10.28991/cej-2021-03091739.
[13] N. Ongdas, F. Akiyanova, Y. Karakulov, A. Muratbayeva, N. Zinabdin, Application of hec-ras (2d) for flood hazard maps generation for Yesil (Ishim) river in Kazakhstan, Water (Switzerland), 12(10) (2020) 1–20, Oct. 2020, doi:10.3390/w12102672.
[14] M. Beza, A. Fikre, A. Moshe, Dam breach modeling and downstream flood inundation mapping using HEC-RAS model on the proposed Gumara Dam, Ethiopia, Adv. Civil Eng., (2023) 1–15, doi: 10.1155/2023/8864328.
[15] M. Garcia, A. Juan, P. Bedient, Integrating reservoir operations and flood modeling with HEC-RAS 2D, Water (Switzerland), 12(8) (2020), doi: 10.3390/w12082259.
[16] A. Khan, I. Pathan, P.G. Agnihotri, 2-D Unsteady Flow Modelling and Inundation Mapping for Lower Region of Purna Basin Using HEC-RAS, 2023. [Online]. Available at www.neptjournal.com
[17] K. Vashist, K.K. Singh, HEC-RAS 2D modeling for flood inundation mapping: a case study of the Krishna River Basin, Water Pract. Technol., 18(4) (2023) 831–844, doi:10.2166/wpt.2023.048.
O. Rahimzadeh, A. Bahremand, N. Noura, M. Mukolwe, Evaluating flood extent mapping of two hydraulic models, 1D HEC-RAS and [18] 2D LISFLOOD-FP in comparison with aerial imagery observations in Gorgan flood plain, Iran, Nat. Resour. Model., 32(4) (2019), doi: 10.1111/nrm.12214.
[19] A.M. Noon, H.G. Ibrahim, S.O. Sulaiman, Application of water evaluation and planning (WEAP) model for reuse of urban wastewater in Western Iraq, in AIP Conf. Proc., Amer. Inst. Physics Inc., Jan. 2022. doi: 10.1063/5.0067164.
[20] I.M. Abdulhameed, S.O. Sulaiman, A.B.A. Najm, N. Al-Ansari, Optimising water resources management by using water evaluation and planning (WEAP) in the West of Iraq, J. Water Land Develop., 53 (2022) 176–186, doi: 10.24425/jwld.2022.140795.
[21] S.A. Aude, N.S. Mahmood, S.O. Sulaiman, H.H. Abdullah, N. Al Ansari, Slope stability and soil liquefaction analysis of earth dams with a proposed method of geotextile reinforcement, Int. J. GEOMATE, 22(94) (2022) 102–112, doi: 10.21660/2022.94.j2241.
[22] D.C. Froehlich, Embankment dam breach parameters and their uncertainties, J. Hydraul. Eng., 134(12) (2008) 1708–1721, doi: 10.1061/(ASCE)0733-9429(2008)134:12(1708).
[23] N.S. Mahmood, S.A. Aude, H.H. Abdullah, S.O. Sulaiman, N. Al Ansari, Analysis of slope stability and soil liquefaction of zoned earth dams using numerical modeling, Int. J. Design Nature Ecodynamics, 17(4) (2022) 557–562, doi: 10.18280/ijdne.170409.