References
Abdullah, M.S., Goh, P.S., Ismail, A.F., Hasbullah, H., 2023, The treatment of endocrine-disruptive chemicals in wastewater through asymmetric reverse osmosis membranes: a review. Symmetry, 15: 1049. https://doi.org/10.3390/sym15051049.
Al-Qodah, Z., Al-Shannag, M., Bani-Melhem, K., Assirey, E., Yahya, M.A., Al-Shawabkeh, A., 2018, Free radical-assisted electrocoagulation processes for wastewater treatment. Environ. Chem. Letters, 16(3): 695–714. https://doi.org/10.1007/s10311-018-0711-1.
Al-Qodah, Z., Tawalbeh, M., Al-Shannag, M., Al-Anber, Z., Bani-Melhem, K., 2020, Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: a state-of-the-art review. Sci. Total. Environ., 744: 140806. https://doi.org/10.1016/j.scitotenv.2020.140806.
Bani-Melhem, K., 2008, Development of a novel submerged membrane electro-bioreactor for wastewater treatment. PhD Thesis, Concordia University, Montreal, QC, Canada.
Bani-Melhem, K., Elektorowicz, M., 2010, Development of a novel submerged membrane electro-bioreactor (SMEBR): Performance for fouling reduction. Environ. Sci. Technol., 44: 3298–3304. https://doi.org/10.1021/es902145g.
Bani-Melhem, K., Elektorowicz, M., 2011, Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction. J. Membr. Sci., 379(1–2): 434–439. https://doi.org/10.1016/j.memsci.2011.06.017.
Bani-Melhem, K., Smith, E., 2012. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chem. Eng. J., 198: 201–210. https://doi.org/10.1016/j.cej.2012.05.065.
Bani-Melhem, K., Elektorowicz, M., Oleszkiewicz, J.A., 2009, Submerged membrane electro-bioreactor (SMEBR) reduces membrane fouling and achieves phosphorus removal. Proceedings of the Water Environment Federation, (14): 2771–2783. https://doi.org/10.2175/193864709793954844.
Bani-Melhem, K., Elektorowicz, M., Tawalbeh, M., Al Bsoul, A., El Gendy, A., Kamyab, H., Yusuf, M., 2023, Integrating of electrocoagulation process with submerged membrane bioreactor for wastewater treatment under low voltage gradients. Chemosphere, 339: 139693. https://doi.org/10.1016/j.chemosphere.2023.139693.
Borea, L., Ensano, B.M.B., Hasan, S.W., Balakrishnan, M., Belgiorno, V., de Luna, M.D.G., Ballesteros, F.C., Naddeo, V., 2019, Are pharmaceutical removal and membrane fouling in electromembrane bioreactor affected by current density?. Science of The Total Environment, 692: 732–740, https://doi.org/10.1016/j.scitotenv.2019.07.149.
Bottino, A., Capannelli, G., Comite, A., Ferrari, F., Firpo, R., Venzano, S., 2009, Membrane technologies for water treatment and agroindustrial sectors, Comptes Rendus Chimie, 12(8): 882–888, https://doi.org/10.1016/j.crci.2008.06.021.
Chen, Y.-A., Ou, S.-M., Lin, C.-C.,2012, Influence of dialysis membranes on clinical outcomes: From history to innovation. Membranes, 12: 152. https://doi.org/10.3390/membranes12020152.
Cicek, N., Suidan, M., Ginestet, P., and Audic, J.-M., 2003, Impact of soluble organic compounds on permeate flux in an aerobic membrane bioreactor, Environ. Technol., 24: 249–25. https://doi.org/10.1080/09593330309385556.
Elektorowicz, M., Hasan, S., Oleszkiewicz, J., 2011, Pilot studies of a novel submerged membrane electrobioreactor (SMEBR). Proceedings of the Water Environment Federation, (2011):3605–3611.
Ezugbe, E.O., Rathila, S., 2020, Membrane technologies in wastewater treatment: a review. Membranes, 10(89): 1–28. https://doi.org/10.3390/membranes10050089.
Farsani, M.H., Yengejeh, R.J., Mirzahosseini, A.H., Monavari, M., Hassani, A.H., Mengelizadeh, N., 2022, Effective leachate treatment by a pilot-scale submerged electromembrane bioreactor. Environ. Sci. Pollut. Res. Int., 29(6): 9218–9231. https://doi.org/10.1007/s11356-021-16196-0
Hasan, S.W., Elektorowicz, M., Oleszkiewicz, J.A., 2012. Correlations between transmembrane pressure (TMP) and sludge properties in submerged membrane electro bioreactor (SMEBR) and conventional membrane bioreactor (MBR). Bioresour. Technol., 120, 199–205. https://doi.org/10.1016/j.biortech.2012.06.043.
Hosseinzadeh, M., Bidhendi, G.N., Torabian, A., Mehrdadi, N., Pourabdullah, M., 2015, A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation. Bioresour. Technol., 192, 177–184, https://doi.org/10.1016/j.biortech.2015.05.066.
Ibeid, S., Elektorowicz, M., Oleszkiewicz, J.A., 2015, Electroconditioning of activated sludge in a membrane electrobioreactor
for improved dewatering and reduced membrane fouling. J. Membr. Sci., 494, 136–142. https://doi.org/10.1016/j.memsci.2015.07.051.
Ibeid, S., Elektorowicz, M., Oleszkiewicz, J.A., 2017, Impact of electrocoagulation of soluble microbial products on membrane fouling at different volatile suspended solids’ concentrations. Environ. Technol., 38: 385–393. https://doi.org/10.1080/09593330.2016.1195879.
Li, Y., Thomas, E.R., Molina, M.H., Mann, S., Walker, W.S., Lind, M.L., Perreault F., 2023, Desalination by membrane pervaporation: a review. Desalination, 547: 116223. https://doi.org/10.1016/j.desal.2022.116223.
Liu, L., Liu, J., Gao, B., Yang, F., 2012, Minute electric field reduced membrane fouling and improved performance of membrane bioreactor, Sep. Purif. Technol., 86: 106–112, https://doi.org/10.1016/j.seppur.2011.10.030.
Matsuura., T., 2001, Progress in membrane science and technology for seawater desalination-a review. Desalination, 134(1–3): 47–54. https://doi.org/10.1016/S0011-9164(01)00114-X
Othman, N.H., Alias, N.H., Fuzil, N.S., Marpani, F., Shahruddin, M.Z., Chew, C.M., David Ng, K.M., Lau, W.J., Ismail, A.F., 2022. A review on the use of membrane technology systems in developing countries. Membranes, 12: 30. https://doi.org/10.3390/membranes12010030.
Sano, T., Kawagoshi, Y., Kokubo, I., Ito, H., Ishida, K. Sato, A., 2022, Direct and indirect effects of membrane pore size on fouling development in a submerged membrane bioreactor with a symmetric chlorinated poly (vinyl chloride) flat-sheet membrane. J. Environ. Chem. Eng., 10(2): 107023. https://doi.org/10.1016/j.jece.2021.107023.
Sophie, J., 2023, Mechanisms in electrodialysis: a comprehensive review. Int. Res. J. Biochem. Bioinform., 13(4): 1–3. https://doi.org/10.14303/2250-9941.2023.69
Talukder, M.E., Alam, F., Mishu, M.M.R., Pervez, M.N., Song, H., Russo, F., Galiano, F., Stylios, G.K., Figoli, A., Naddeo, V., 2022. Sustainable membrane technologies for by-product separation of non-pharmaceutical common compounds. Water, 14: 4072. https://doi.org/10.3390/w14244072.
Valappil, R.S.K., Ghasem, N., Al-Marzouqi, M., 2021, Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J. Ind. Eng. Chem., 98:103–129, https://doi.org/10.1016/j.jiec.2021.03.030.
Verma, B., Balomajumder, C., Sabapathy, M., Gumfekar, S.P.,2021. Pressure-driven membrane process: a review of advanced technique for heavy metals remediation. Processes, 9: 752. https://doi.org/10.3390/pr9050752.
Yamamoto, K., Hiasa, M., Mahmood, T., and Matsuo, T., 1989. Direct solid-liquid separation using hollow fiber membrane in activated sludge aeration tank, Water Sci. Technol., 21: 43–54. https://doi.org/10.1016/B978-1-4832-8439-2.50009-2
Yan, Z., Jiang, Y., Liu, L., Li, Z., Chen, X., Xia, M., Fan, G., Ding, A., 2021. Membrane distillation for wastewater treatment: a mini review. Water, 13: 3480. https://doi.org/10.3390/w13243480.
Zhu, Y., Chen, R., Li, Y-Y., Sano, D., 2021, Virus removal by membrane bioreactors: a review of mechanism investigation and modeling efforts. Water Res., 188: 116522, https://doi.org/10.1016/j.watres.2020.116522