References
[1] Ben Hassen, T., El Bilali, H., 2022, Water management in the Gulf Cooperation Council: challenges and prospects, in Current Directions in Water Scarcity Research: Water Scarcity, Contamination, and Management, A.K. Tiwari et al., Eds. Elsevier, vol. 5, pp. 525–540.
[2] World Future Energy Summit - WFES, 2023, Tapped out – The new normal of rising water demand in the GCC. Available at https://www.worldfutureenergysummit.com/en-gb/future-insights-blog/tapped-out-the-newnormal-of-rising-water-demand-in-the-gcc.html.
[3] Elrahmani, A., Hannun, J., Eljack, F., Kazi, M.-K., 2021, Status of renewable energy in the GCC region and future opportunities. Curr. Opin. Chem. Eng., 31, 100664. https://doi.org/10.1016/j.coche.2020.100664
[4] Al-Abdullah, Y.M., Al-Ragom, F., Alsayegh, O., Al-Adwani, S.A., Khajah, M., Al-Mutairi, N., Al-Mutairi, M. 2023. Kuwait energy outlook 2023: The security–transition nexus of Kuwait. Kuwait Institute for Scientific Research (KISR).
[5] Crawford, M., 2023, 8 engineering challenges for desalination technologies. ASME. Available at https://www.asme.org/topics-resources/content/8-engineeringchallenges-for-desalination-technologies.
[6] Ahmed, F.E., Khalil, A., Hilal, N., 2021, Emerging desalination technologies: current status, challenges and future trends. Desalination, 517, 115183. https://doi.org/10.1016/j.desal.2021.115183
[7] Abimbola, T.O., Yusof, K.W., Takaijudin, H., Abdurrasheed, A.S., Al-Qadami, E.H.H., Oladipo, S.O., Shuaib, M.B., 2021, A concise review of major desalination techniques: features and limitations, in Proceedings of the International Conference on Civil,
Offshore and Environmental Engineering, pp. 154–162.
[8] Lee, J., Younos, T., 2019, Desalination: opportunities and challenges. WaterWorld, 10 September 2019. Available at https://www.waterworld.com/home/article/14071194/desalination-opportunities-and-challenges.
[9] Solargis., 2024, Solar resource maps and GIS data for 200+ countries | Solargis, The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis. Available at https://solargis.com/maps-and-gis-data/download/kuwait.
[10] Al-Badi, A., Al Mubarak, I., 2019, Growing energy demand in the GCC countries. Arab J. Basic Appl. Sci., 26, 488–496. https://doi.org/10.1080/25765299.2019.1687396
[11] Salem, H., Khanafer, K., Alshammari, M., Sedaghat, A., Mahdi, S., 2022, Cooling degree days for quick energy consumption estimation in the GCC countries. Sustainability, 14, 13885. https://doi.org/10.3390/su142113885
[12] De La Cerna, F., 2017, Demand for energy-efficient systems is driving the GCC’s HVAC market construction week online. Construction Week Online, 10 September 2017. Available at https://www.constructionweekonline.com/news/article-46219-demand-for-energy-efficientsystems-is-driving-the-gccs-hvac-market
[13] John, I., 2015, GCC needs $220b for new cooling, power capacities. Khaleej Times. Available at https://www.khaleejtimes.com/local-business/gcc-needs-220b-for-new-cooling-power-capacities.
[14] Almasri, R.A., Alshitawi, M.S., 2022, Electricity consumption indicators and energy efficiency in residential buildings in GCC countries: extensive review. Energy Build, 255, 111664. https://doi.org/10.1016/j.enbuild.2021.111664
[15] Abdulrahim, H.K., Ahmed, M., 2022, Desalination and cooling system. United States Patent No. US 11,407,659 B1. Kuwait Institute for Scientific Research (KISR).
[16] Nikbakhti, R., Wang, X., Hussein, A.K., Iranmanesh, A., 2020, Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Eng. J., 59, 707–738. https://doi.org/10.1016/j.aej.2020.01.036
[17] Pearson, A., 2022, Development of refrigeration and heat pump systems. Front. Therm. Eng., 2, 1–6. https://doi.org/10.3389/fther.2022.1042347
[18] Ayou, D.S., Wardhana, M.F.V., Coronas, A., 2023, Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates. Energy, 268, 126679. https://doi.org/10.1016/j.energy.2023.126679
[19] Wang, Y., Morosuk, T., Yang, S., Cao, W., 2023, A high-efficiency multi-function system based on thermal desalination and absorption cycle for water, water-cooling or water-heating production. Energy Convers. Manage., 284, 116962. https://doi.org/10.1016/j.enconman.2023.116962
[20] Nikkhah, H., Beykal, B., 2023, Process design and technoeconomic analysis for zero liquid discharge desalination via LiBr absorption chiller integrated HDH-MEE-MVR system. Desalination, 558, 116643. https://doi.org/10.1016/j.desal.2023.116643
[21] Deb, K., 2001, Multi-Objective Optimization Using Evolutionary Algorithm. John Wiley and Sons, Ltd., USA.
[22] Eiben, A.E., Smith, J.E., 2003, Introduction to Evolutionary Computing. Springer-Verlag, New York.
[23] Coello, C.A., van Veldhuizen, D.A., Lamont, G.B., 2002, Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic/Plenum Publishers, New York.
[24] Andersson, J., 2001, Multi-objective optimization in engineering design: applications to fluid power systems. Ph.D. Dissertation No. 675, Linkoping Studies in Science and Technology, Department of Mechanical Engineering, Linköping University, Sweden.
[25] Vince, F., Marechal, F., Aoustin, E., Bréant, P., 2008, Multi-objective optimization of RO desalination plants. Desalination, 222, 96–118. https://doi.org/10.1016/j.desal.2007.02.064
[26] Dennis, B., Egorov, I., Han, Z.-X., Dulikravich, G., Poloni, C., 2000, Multi-objective optimization of turbo-machinery cascades for minimum loss, maximum loading, and maximum gap-to-chord ratio. Int. J. Turbo Jet Engines, 18, 201–210. https://doi.org/10.1515/TJJ.2001.18.3.201
[27] Tanvir, M.S., Mujtaba, I.M., 2008, Optimisation of design and operation of MSF desalination process using MINLP technique in gPROMS. Desalination, 222, 419–430. https://doi.org/10.1016/j.desal.2007.02.068
[28] Ahmed, M., Kumar, R., Garudachari, B., Thomas, J.P., 2019, Performance evaluation of a thermo-responsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination, 452, 132–140. https://doi.org/10.1016/j.desal.2018.11.013
[29] Colciaghi, R., Simonetti, R., Molinaroli, L., Binotti, M., Manzolini, G., 2022, Potentialities of thermal responsive polymer in forward osmosis (FO) process for water desalination. Desalination, 519, 115311. https://doi.org/10.1016/j.desal.2021.115311
[30] Ezgi, C., 2014, Design and thermodynamic analysis of an H2O–LiBr AHP system for naval surface ship application. Int. J. Refrig., 48, 153–165. https://doi.org/10.1016/j.ijrefrig.2014.08.016
[31] Abdulrahim, H.K., Darwish, M.A., 2015, Thermal desalination and air conditioning using absorption cycle. Desal. Water Treat., 55, 3310–3329. https://doi.org/10.1080/19443994.2014.939492
[32] Abdulrahim, H.K., Ahmad, M., 2024, An innovative approach to desalination and cooling using forward osmosis with thermal recovery and vapor absorption cycle. Manuscript submitted for consideration at WSTA 15th Gulf Water Conference: Water in the GCC: Embracing Technological Progress, Doha, Qatar, 28–30.
[33] Abdulrahim, H.K., Alasfour, F.N., 2010, Multi-objective optimisation of hybrid MSF–RO desalination system using genetic algorithm. Int. J. Exergy, 7, 387–424. https://doi.org/10.1504/IJEX.2010.031991