References
Abushammala, M.F.M., Al-Harrasi, S.H.S., Qazi, W.A., 2020,Optimal selection of seawater desalination technology in Oman. J. Environ. Eng. Sci., 16, 11–18. https://doi.org/10.1680/jenes.19.00049
Abushawish, A., Bouaziz, I., Almanassra, I.W., AL-Rajabi, M.M., Jaber, L., Khalil, A.K.A., Takriff, M.S., Laoui, T., Shanableh, A., Atieh, M.A., Chatla, A., 2023, Desalination pretreatment technologies: current status and future developments. Water (Switzerland), 15(8), 1572. https://doi.org/10.3390/w15081572
Chen, D., Yang, L., Li, J., Wu, Q., 2019, Effect of self-doped heteroatoms in biomass-derived activated carbon for supercapacitor applications. ChemistrySelect, 4, 1586–1595. https://doi.org/10.1002/slct.201803413
Feroz, S., Lakkimsetty, N.R., Rao, M.V., 2010, Sea water desalination and its environmental impact in Oman: a review. ANU J. Eng. Technol., 2(2): 29-32.
Ferrández-Gómez, B., Ruiz-Rosas, R., Beaumont, S., Cazorla-Amorós, D., Morallón, E., 2021, Electrochemical regeneration of spent activated carbon from drinking water treatment plant at different scale reactors. Chemosphere, 264, 128399. https://doi.org/10.1016/j.chemosphere.2020.128399
Hussain, J., Husain, I., Arif, M., 2013, Fluoride contamination in groundwater of central Rajasthan, India and its toxicity in rural habitants. Toxicol. Environ. Chem., 95, 1048–1055. https://doi.org/10.1080/02772248.2013.832545
Kyaw, H.H., Al-Mashaikhi, S.M., Myint, M.T.Z., Al-Harthi, S., El-Shafey, E.S.I., Al-Abri, M., 2021, Activated carbon derived from the date palm leaflets as multifunctional electrodes in capacitive deionization system. Chem. Eng. Process. - Process Intensif., 161, 108311. https://doi.org/10.1016/j.cep.2021.108311
Laxman, K., Myint, M.T.Z., Al Abri, M., Sathe, P., Dobretsov, S., Dutta, J., 2015, Desalination and disinfection of inland
brackish groundwater in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination, 362, 126–132. https://doi.org/10.1016/j.desal.2015.02.010
Li, Q., Xiao, Y., Shi, X., Song, S., 2017, Rapid evaporation of water on graphene/graphene-oxide: a molecular dynamics study. Nanomaterials, 7(9): 265. https://doi.org/10.3390/nano7090265
Maddah, H.A., 2020, Adsorption isotherm of NaCl from aqueous solutions onto activated carbon cloth to enhance membrane filtration. J. Appl. Sci. Eng., 23, 69–78. https://doi.org/10.6180/jase.202003_23(1).0009
Nguyen, T.P.N., Yun, E.T., Kim, I.C., Kwon, Y.N., 2013, Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J. Membr. Sci., 433, 49–59. https://doi.org/10.1016/j.memsci.2013.01.027
Thakur, A.K., Sathyamurthy, R., Velraj, R., Lynch, I., Saidur, R., Pandey, A.K., Sharshir, S.W., Ma, Z., Ganesh Kumar, P., Kabeel, A.E., 2021, Sea-water desalination using a desalting unit integrated with a parabolic trough collector and activated carbon pellets as energy storage medium. Desalination, 516, 115217. https://doi.org/10.1016/j.desal.2021.115217
Yin, J., Zhu, G., Deng, B., 2016, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379, 93–101. https://doi.org/10.1016/j.desal.2015.11.001
Zhang, Zongbo, Zhang, Y., Jiang, C., Li, D., Zhang, Zexia, Wang, K., Liu, W., Jiang, X., Rao, Y., Xu, C., Chen, X., Meng, N., 2022, Highly efficient capacitive desalination for brackish water using super activated carbon with ultra-high pore volume. Desalination, 529, 115653. https://doi.org/10.1016/j.desal.2022.115653