• deswater.com

  • Dupont

  • Global Water Intelligence

  • DesalData

  • Water Desalination Report

  • Sea4Value

  • New Skin

  • Collect Papers of Sidney Loeb 1917 - 2008

  • New

Electricity generation and industrial wastewater treatment using microbial fuel cell

Abdullah Al-Matouq*, Mohd Elmuntasir Ahmed, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Noura Alayyadhi, Ahmed Shishter

Kuwait Institute for Scientific Research, KISR, Water Research Centre, Kuwait
*email: amatouq@kisr.edu.kw (corresponding author)

(2025) 272–274
https://doi.org/10.5004.dsal.2025.700110

References [1] Ministry of Electricity and Water. 2017. Statistical Year Book. Electrical Energy. [2] A. Abusam, A. Shahalam, Wastewater reuse in Kuwait: opportunities and constraints. WIT Trans. Ecology Environ. 179 (2013) 1743–3541. https://doi.org/10.2495/SC130632 [3] J. Wan, J. Gu, Q. Zhao, Y. Liu, COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Scientific Reports. 6 (2016) 25054. https://doi.org/10.1038/srep25054 [4] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40 (2006) 5181–5192. https://doi.org/10.1021/es0605016
$45.00
Abstract

Due to the rapid increase in population and industry sectors, the consumption of energy from fossil fuels is increasing rapidly, as a result, carbon emissions have increased, which negatively affects the environment. Currently, the electrical energy plants in Kuwait serve around 70,085 M.kWh and this is expected to increase in the future, which will increase the strain on the budget of the Kuwaiti government [1]. Most of the energy consumption was concentrated in the water and electricity sector, oil sector, transportation sector, and household sector. Furthermore, the industrial sector is another important sector that consumes a significant amount of energy on a daily basis [2]. In Kuwait, there are now more than 18 industrial areas and most of these industries are located mainly in Shuaiba, Mina Abdullah and Mina Al-Ahmadi. Those areas mainly contain the following industries: refineries, dairy factories, detergents factories, and soft drinks factories. Kuwait Environmental Protection Authority (KEPA) has divided industrial wastewater into two main categories: industrial wastewaters that meet KEPA’s standards and can be treated off-site at municipal wastewater treatment plants, and industrial wastewaters that do not meet KEPA’s standards and can be treated onsite or at special treatment plants. Thus, it is important to find an effective and sustainable way to treat industrial wastewater on-site and then transfer it to the treatment plant. Generally, wastewater contains a huge amount of energy, approximately 3–10 times more energy than the energy required for treating wastewater [3]. Each gram (g) of chemical oxygen demand (COD) contains 14.7 kJ, which means that there is a massive amount of energy in wastewater [3]. Using conventional wastewater treatment processes are expensive and consume huge amounts of energy, especially with the restrictive regulations prior to discharge where most of the energy is used for aeration and recirculation. Microbial fuel cells (MFCs) are bioelectrochemical devices that utilize electrochemically active bacteria (The microorganisms that are capable of exocellular electron transfer) as catalysts to convert the chemical energy of organic substrate into electricity [4]. MFCs are able to recover energy by degrading organic and inorganic matter in wastewater and produce less sludge. MFC offers a promising wastewater treatment technology with great environmental friendly benefits, such as a source of energy, wastewater treatment process, biosensor system, and low carbon emission process [4]. MFCs have many advantages, such as being easy to handle, not being toxic, the ability to extract 90% of electrons from organic compounds, and self-sustaining systems. MFC produces around 0.5 to 0.8 V working voltage (0.02 – 0.07 kWh/kg-COD), which considers low for real applications but very efficient in wastewater treatment. The generated energy is a function of wastewater type, COD concentration, MFC design, and the selected design materials. In addition, the generated electricity can be promoted by connecting many individual MFCs in parallel, series, or hybrid stacks.

Keywords: Microbial fuel cell; Industrial wastewater; Electricity; Sustainability; Treatment

Product Details
16 other entries in the same category:

Atmospheric water generation in Qatar: a sustainable approach for extracting water from air powered by solar energy

Aiyad Gannan

Department of Mechanical Engineering University of Doha for Science and Technology, Doha, Qatar, email: aiyad.gannan@udst.edu.qa

(2025) 141–145
https://doi.org/10.5004.dsal.2025.700031

References [1] R.M. Hannun, H.E. Radhi, H. Hussein, Design and evaluation of a combined (humidification-dehumidification) system to extract fresh water from the air in the arid area, Int. J. Eng. Res. Africa, 52 (2021) 115–123. https://doi.org/10.4028/www.scientific.net/JERA.52.115 [2] M.S. Ferwati, Water harvesting cube, SN Appl. Sci., 1 (2019) 779....
Price $45.00
More
In stock

Wastewater industrial database for total nitrogen in Shuaiba area in Kuwait

A. Al-Haddad*, M.E. Ahmed, H. Abdullah, A. Al-Matouq, A. Abusam
Kuwait Institute for Scientific Research, Safat, Kuwait
*email: ahadad@kisr.edu.kw (corresponding author)

(2025) 277–285
https://doi.org/10.5004.dsal.2025.700083

References Al-Haddad, A. Ahmed, M.E., Abusam, A., Al-Matouq, A., Khajah, M., and Al-Yaseen, R., 2022, Database for total petroleum hydrocarbon in industrial wastewater generated at Sabhan area in Kuwait. The 14th Gulf Water Conference. Saudi Arabia, Riyadh, 12–14. APHA, 2017, Standard method for the examination of water and wastewater. American Public...
Price $45.00
More
In stock

Solar-driven desalination in Saudi Arabia for a sustainable future

Raid Alrowais1*, D. Ybyraiymkul2, M. Kum Ja2, Kim Choon Ng2

1Department of Civil Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia
email: rnalrowais@ju.edu.sa (corresonding author)
2Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE),
King Abdullah University of Science and Technology, Saudi Arabia

(2025) 30–34
https://doi.org/10.5004.dsal.2025.700057

References [1] F. Baghdadi, K. Mohammedi, S. Diaf, O. Behar, Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system, Energy Convers. Manage., 105 (2015) 471–479. https://doi.org/10.1016/j.enconman.2015.07.051 [2] F. Sarhaddi, F. Farshchi Tabrizi, H. Aghaei Zoori, S.A.H. Seyed Mousavi, Comparative study of two weir...
Price $45.00
More
In stock

Evaluating the hydraulic feasibility of brackish groundwater supply for small-scale reverse osmosis plants in community centers in Kuwait

Amjad Aliewi*, Harish Bhandary

Water Resources Development and Management Program, Kuwait Institute for Scientific Research, Water Research
Center, P.O. Box 24885, Safat 13109, Kuwait
*email: aaliewi@kisr.edu.kw (corresponding author)

(2025) 153–162
https://doi.org/10.5004.dsal.2025.700033

References Al Rashed, M., Safelnasr, A., Sherif, M., Murad, A., Alshamsi, D., Aliewi, A., Ebraheem, A. (2023). Novel concept for water security quantification considering nonconventional and virtual water resources in arid countries: application in Gulf Cooperation Council Countries. Sci. Total Environ. 163473....
Price $45.00
More
In stock

Fuel allocation in water and power cogeneration desalination plant

Ibrahim S. Al-Mutaz*, Meshari S. Aldalbahi

Chemical Engineering Dept., College of Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
*email: almutaz@ksu.edu.sa (corresponding author)

(2025) 22–29
https://doi.org/10.5004.dsal.2025.700028

References I.S. Al-Mutaz, Operation of dual-purpose MSF plants at water/power peak demand, Desalination, 84 (1991) 105. http://dx.doi.org/10.1016/0011-9164(91)85121-A I.S. Al-Mutaz, A.M. Al-Namlah, Characteristics of dual-purpose MSF desalination plants, Desalination, 166 (2004) 287–294. https://doi.org/10.1016/j.desal.2004.06.083 M. Kharbach, Fuel...
Price $45.00
More
In stock

Ecofriendly and low-cost adsorbent for efficient removal of lead and nickel from aqueous solution

Amal S. Al Rahbi*, Nalini Uthman, Wafa A. Al Rawahi, Amani Al Nabhani, Khulod Al Maqbali, Maryam Al Hattali, Zahra Al Zuhimi

Department of Applied Sciences, University of Technology and Applied Sciences, Muscat, Oman
* amal.alrahbi@utas.edu.om (corresponding author)

(2025) 308–314
https://doi.org/10.5004.dsal.2025.700024

References Asriza, R., Fabiani, V., Julianti, E. (2022). Adsorption efficiency of heavy metals (Fe and Zn) in open pit water using Fe3O4/SiO2 nanocomposite from kaolin bangka. IOP Conf. Ser. Earth and Environmental Science, 1108(1), 012064. https://doi.org/10.1088/1755-1315/1108/1/012064 Chen, C., Cheng, T., Zhang, M., Zhou, M. (2017). Competitive...
Price $45.00
More
In stock

Revolutionizing desalination: KISR's breakthrough projects addressing water crisis challenges

Mansour Ahmed

Kuwait Institute for Scientific Research, Water Research Center, P.O. Box 24885, 13109, Safat, Kuwait
email: mahmed@kisr.edu.kw

(2025) 54–68
https://doi.org/10.5004.dsal.2025.700092

References [1] M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv., 2(2) (2016) e1500323; https://doi.org/10.1126/sciadv.1500323 [2] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43(9) (2009) 2317–2348....
Price $45.00
More
In stock